

1

Bachelor Thesis

Seismic Data Analysis with ObsPy

Department of Earth and Environmental Sciences,
Ludwig-Maximilians-University Munich

by

Nico Trebbin

First Examiner: Prof. Dr. Heiner Igel
Second Examiner: Dr. Joachim Wassermann

Date of submission: Monday, August 23, 2010

Matriculation number: 3040238

II

Affidavit

by Trebbin, Nico

 last name mat. number

I hereby declare that the Bachelor Thesis with the title:

Seismic Data Analysis with ObsPy

has been written only by me and without any assistance from third parties.

Furthermore, I confirm that no sources have been used in the preparation of this thesis oth-

er than those indicated in the thesis itself, and that quotations used were identified.

The thesis does not contain any work that I have handed in or have had graded as a

Prüfungsleistung earlier on.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und nur die ange-

gebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen

Werken entnommene Stellen sind unter Angabe der Quelle als Entlehnung kenntlich ge-

macht. Die Arbeit enthält kein Material, das ich bereits zu einem früheren Zeitpunkt als

Prüfungsleistung eingebracht habe.

_______________________ ___________________

 Date Signature

III

Abstract

Goal of the present thesis is the automated generation of graphics for the observation of co-

seismic ground motions (translations and rotations) at the seismic measurement station

Wettzell, Germany. For this purpose a program was developed that is based on the pro-

gramming language Python.

It uses the ObsPy toolbox developed by the Department of Earth and Environmental Sci-

ences at the Ludwig-Maximilians-University, Munich and expands the functionalities pro-

vided by now.

Furthermore, it includes several interfaces to work with other web services and allows the

seismologists of the International Working Group on Rotational Seismology to fast process

the data they are interested in. Thus it provided the ability to pre-check seismic data for

their relevance.

Within this thesis the reader can obtain an insight of the development of the program and

gets an introduction to the operating mode and output of the program.

1

List of Figures

Figure 1 Schematic sketch of the operating mode ... 12

Figure 2 Plot of all simulated phases calculated with the ak135 model ... 15
Figure 3 Uncorrected BHN component of the Wettzell seismometer for Nicobar Islands event at

 2010-06-16 with UTC time on the time axis and some undefined amplitude values by now. 17

Figure 4 Benchmark results from a synthetic 100.000 sample noise test .. 19

Figure 5 Computing time of calculations done during Nicobar Islands processing 20

Figure 6 Example command line output of the Nicobar Islands event .. 22

Figure 7 Unaffected seismic streams for the Nicobar Islands event ... 23

Figure 8 Corrected signal of the first horizontal component of the seismometer ... 24

Figure 9 Second horizontal component of the seismometer .. 25

Figure 10 Vertical component of the seismogram ... 25

Figure 11 Ringlaser component with fixed nm/s axis for better coherence with other channels 26

Figure 12 Seperated transveral acceleration & rotation rate time series ... 27

Figure 13 Superpostion of TA (red) and RR (black) ... 27
Figure 14 As we see here the correlation coefficient is very high since P-wave arrival. Even if the

 main phases arrived the coefficient stays high. .. 28
Figure 15 In the spectrogram of the transversal acceleration you can clearly determine the dominant

 frequencies from 0.01Hz to a maximum of 2Hz around the S wave arrival 29
Figure 16 The dominant frequencies of the rotation rate are nearly equal to the frequency spectrum of

 the transversal acceleration .. 29

Figure 17 Cross correlation plot of the IJR event ... 32
Figure 18 Spectrogram of the transversal acceleration component with interesting frequency-bands

 at 6.5Hz and 3.7Hz ... 32
Figure 19 Spectrogram of rotation rate with nothing more than the low frequency-band from 0.01Hz

 to 0.5Hz .. 33

Figure 20 No significant excess value could be retrieved by looking at this noise-like seismogram 34

Figure 21 Again we can see the 7Hz frequency-band and the expected tele-seismic low frequency-band 34

Figure 22 The rotation rate has a freqency range from 0.01Hz to 1Hz .. 35

List of Tables

Table 1 Simulation of arrival times with the ak135 models for all phases of the Nicobar Islands event on

 2010-06-12. dT/dD describes the travel time with respect to distance, dT/dh the travel time with

 respect to source depth and d2T/dD2 the second derivative of travel time with respect to distance. 14

Table 2 Details of the benchmarked computers the script has been tested on .. 19

Table 3 Red marked events are the ones that fits best to our specifications .. 31

IV

file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264810
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264815
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264817
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264820
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264821
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264823
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264823
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264824
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264824
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264825
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264826
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264826
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264828
file:///C:/Users/Nico/Documents/Bachelorarbeit%20(Automatisch%20gespeichert).docx%23_Toc270264829

V

Table of Contents

Affidavit ……… II

Abstract …….. III

List of Figures ……….. IV

List of Tables ……. IV

1. Introduction ... 1

1.1. Motivation .. 2

1.2. Background... 2

1.3. Approach .. 3

2. Scientific Computing with Python .. 4

2.1. The use of ObsPy .. 4

2.2. NumPy as a fundamental package ... 5

2.3. SciPy as a supplement for numeric simulation .. 5

2.4. Matplotlib for visualizing seismic data ... 6

2.5. SOAP web service as a relocated database .. 6

3. Fundamental seismic theory behind the scene ... 7

3.1. Distance and travel times ... 7

3.2. Instrument response .. 7

3.3. Rotation of horizontal components ... 8

3.4. Estimation of spectra ... 9

3.5. Cross correlation .. 9

4. Operating mode of the program .. 10

4.1. Introduction to the operating mode .. 11

4.2. TauP web service .. 13

4.2.1. How TauP works ... 13

4.2.2. The choice of the model ... 13

4.3. ObsPy routines ... 17

4.4. Cross correlation in a moving time window ... 18

4.5. Performance of the program ... 18

5. The output of the program .. 21

5.1. Command line response ... 21

5.2. Unaffected seismic streams ... 23

5.3. Instrument correction .. 24

VI

5.4. Transverse acceleration vs. rotation rate .. 26

5.5. Spectrograms ... 28

6. Using the program .. 30

6.1. Recent past seismic events .. 30

6.2. Observations using the program .. 31

7. Conclusions .. 36

8. Acknowledgments .. 37

9. References .. 38

Appendix .. A

1

1. Introduction

Seismology is a science primarily based on computational processing and inversion of

translational ground motions recorded by seismometers. Inertial seismometers measure

three components of translational ground displacement and form the basis for any interpre-

tation of seismic events. (Igel et al. 2005) There are several global seismic networks that

record any ground motion induced by seismic activity. Thanks to the digital revolution,

modern seismometers record their measurements digitally and it is easy to use the data for

further processing. Despite the fact that there is no real standard for recording and storage

of the different seismometers that form a regional or global net, it causes to take a definite

form that a few data formats will achieve the world standard. More and more data centers

collect and receive snowballing amount of data from all over the world. The availability of

high-quality datasets for further computational processing increases every day. Seismology

has been used for decades to understand and model the internal structure of the earth. With

increasing computational capacities and huge supercomputers seismologists are able to

simulate even complex and detailed models of the inner Earth’s structure. But until some

years ago, there had only been two types of measurements that could be used in these

models. The first type, the classical seismometer, which records either analogically or digi-

tally, and the second type aims at measuring the strain (deformation) of the Earth. In the

past years, ring laser gyroscopes were developed that close the missing gap in order to ful-

ly describe the complete motion of a seismic wave propagating through the earth. (Igel et

al., 2005, 2007) By feeding datacenters with those new ground rotation rates as a fourth

component for two seismic stations in the world (Christchurch, New Zealand and Wettzell,

Germany), seismologists are able to complement the recent seismic models of the earth.

Thus, in April 2010 seismologists could observe rotational motions from the Earth’s free

oscillations (Kurrle et al., 2010). Furthermore, there were several articles in geophysical

related journals that pick out rotational motions as a central theme. A group of seismolo-

gists established an international working group on rotational seismology in 2007 that

made an issue out of the new measurement technique by ring laser technology.

2

1.1. Motivation

Since a seismologist’s field of work changed over the past few years due to several auto-

mated systems and a general automation of processes that had to be done by seismologists

before, recent work is focused on the interpretation of huge datasets. The availability of

internet data for nearly every region on the globe allows seismologists to compute and

simulate nearly any scenario induced by seismic activity. As typical for an industry that

uses computers to simulate and illustrate data, there are several operating systems and pro-

grams used to achieve the desired output. Every seismologist is used to his own architec-

ture and environment and prefers different tools written in different languages as C, C++,

FORTRAN, Java™ or Python just to mention the common ones. Furthermore, the quasi

standard for scientists regardless of their scientific field is Matlab®. The motivation behind

the thesis is to develop a program that enables the seismologist to easily obtain a first over-

view of translational and rotational ground displacements induced by earthquakes (veloci-

ty, acceleration, rotation rate). With the tool developed in this thesis, a seismologist who is

interested in transversal and rotational similarity can easily get a first overview of the

earthquake he is interested in.

1.2. Background

The objective of scientists who programmed a toolbox for seismology at the LMU in Mu-

nich is to provide a base that simplifies the usage of programming and scripting for seis-

mologists.

With this intention, they used the programming language Python to design an easy to use

framework for developing programs with unique and special requirements on the typical

mathematical methods used in geophysics for processing seismograms (Beyreuther et al.,

2010). The toolbox mentioned before is called ObsPy which contains all basic and essen-

tial seismological routines a seismologist usually needs. Part of this thesis is to find a solu-

tion to handle seismic datasets and process them in several different routines. Due to the

rapidly growing popularity of Python in the scientific world in the past few years, it just

seems consequential to program a tool in this language. The excellent capabilities to access

compiled C and FORTRAN functions enable seismologists to use their old approved codes

3

within a new coding environment. As a result ObsPy seems to be the best basement for the

program we want to develop.

1.3. Approach

To obtain maximized autonomy from local datacenters and to maintain the redundant

availability of seismic data 24 hours a day with a uniform storage system for all connected

stations, it seems consequent to decide for the ArcLink web service of the GEOFON initia-

tive of the Geoforschungszentrum Potsdam (GFZ).

One goal of the program developed within this thesis was to automate nearly any process

and to simplify the usage of the program. To provide a self-explaining in- and output of the

program we need to calculate the time-window of the seismic event we want to process.

Seismic events in the ArcLink web service are generally stored depending on their time of

origin. The ArcLink Client of ObsPy needs three options to receive the time series from the

servers: the origin time and the forward- / backward-time of the P-wave arrival. Since we

do not know how long the time-window of an earthquake could last until we downloaded

some part of the time series and compute the travel times of the individual modes, we need

to simulate them by using models. Unfortunately there is no implementation of TauP for

Python, so we need to extend the script functionality differently. There are several ways to

access the local TauP functionality within Python, but the development of such a client and

the necessary Java™-bindings to further process the TauP output does not seem to be the

ideal way to develop a largely independent and closed package. Therefore it is reasonable

to pick another web service. ORFEUS (Observatories and Research Facilities for EUrope-

an Seismology) provides a web service which allows a direct integration of the TauP func-

tionality with much less effort than the local Java™-bindings.

The rest of the functions added to the program could be obtained within ObsPy, the pack-

ages ObsPy is based on, or Python core functionalities.

4

2. Scientific Computing with Python

Python is a portable, interpretative and object-orientated programming language. It is co-

ordinated by the non-commercial organization Python Software Foundation. It can be used

on nearly every operating system like Unix, Windows or Mac OS. Therefore an important

requirement in a scientific environment is given. A Python program – often called script -is

a text which could be executed by an interpreter. The Python syntax allows very compact

scripting and the layout of the code is not only for a better legibility of the code but has a

meaning. As an example, the end of a code line is the end of a command. Command-

blocks (e.g. the inner of a loop) are defined by insertion. Thus, lines of a code which are

inserted at the same place are part of a command-block. Python is object-orientated, im-

perative and functional. There is no declaration of variables with a data type. The data type

is maintained by the context and Python does a type conversion automatically if it is neces-

sary. Multiple variables can be defined by one tuple which includes all the variables. To

exchange the value of x and y you just need to type x,y = y,x. In addition, common mathe-

matical spelling is supported by the syntax (Weigend, 2008). Altogether Python is a very

powerful programming language with an intuitive syntax and an integrated help system.

Due to its easy syntax it is the first choice for people who are already familiar with mathe-

matical, analytical software like Maple™, Mathematica or Matlab®.

2.1. The use of ObsPy

As mentioned before, ObsPy is a powerful toolbox developed for the needs of seismolo-

gists. Nearly every routine and algorithms often used in seismology is implemented. Wave-

form import and export functions like GSE2, SEED and SAC support is implemented and

allows the user to start with analyzing the seismic data quickly. For this purpose ObsPy

offers, besides imaging and signal processing routines like waveform plotting, imaging

spectrograms, filtering and rotating data. Additionally ObsPy includes several clients for

easy access to data saved in data centers like WebDC or the internal LMU-operated

Seishub service. Consequently the user can start with nothing more than his code. The data

he wants to analyze could be received from an external source and computed right on the

5

user’s machine. Thanks to NumPy and SciPy that are dependencies of ObsPy the pro-

cessing of the data goes really fast. (ObsPy Documentation, 2010)

2.2. NumPy as a fundamental package

NumPy is the fundamental package for scientific computing in Python. It is a library that

provides several multidimensional array objects. Numerous routines allow fast operations

on arrays, including mathematical, logical, sorting, selecting, shape manipulation and dis-

crete Fourier transform just to mention the important ones. On the contrary to the standard

Python core, NumPy uses ndarray objects with many operations being performed in com-

piled code for performance issues. Thus the performance of NumPy is similar to machine-

oriented languages like C because it uses pre-compiled C code. Furthermore NumPy is the

core of almost every scientific Python code that included mathematical routines. It is more

a must-have extension to extend Python’s core abilities than just a simple library. (NumPy

Documentation, 2010)

2.3. SciPy as a supplement for numeric simulation

SciPy is an additional library which is very useful for scientists. It contains several mathe-

matical algorithms and convenient functions and adds significant power by exposing the

user high-level commands and classes for data manipulation and visualization. The user

obtain a data-processing and interactive prototyping environment such as Matlab®. With

SciPy and Python the user obtains the advantages of both, a very powerful advanced math-

ematical processing software like SciPy and a very powerful portable connection to the

system with the core abilities of Python. With a community continuously developing new

features and algorithms like parallel computing and cluster rendering, this combination

enables the scientist to compute even computationally intensive algorithms in an accepta-

ble time frame. (SciPy Documentation, 2010)

6

2.4. Matplotlib for visualizing seismic data

Matplotlib is a python package to generate high quality and ready to publish 2D plots. Its

numerous output formats and vector based graphics makes it the ideal package for visualiz-

ing seismic data with the ability to easily post-process the plots generated by the program.

The possibility of embedding Matplotlib in a GUI library like wxWidgets or GTK+ makes

it a really powerful package for further development and improvement. The plotting library

uses an object-oriented API (application programming interface) resembling the one you

maybe know from Matlab®. (Sandro, 2009)

Thus the pylab interface of Matplotlib is a set of functions which allows the user to main-

tain plots with quite similar code used for Matlab®. Matplotlib is the core image processor

of the ObsPy toolbox and is used for every graphical output. The advantage of interactive

manipulation of graphical data by using additional packages as IPython enables the user to

achieve the desired results really intuitive and fast. To model 3D models of the Inner Earth,

e.g. to simulate wave propagation, one rapidly reaches the limits of Matplotlib. VTK (The

Visualization Toolkit) should be the first choice for this purpose. At this point the illustra-

tion of seismic data within 3D graphics is not needed.

2.5. SOAP web service as a relocated database

SOAP (Simple Object Access Protocol) is a network protocol with allows to share data

between two independent machines only connected through the internet. It provides remote

procedure calls which one can swap processes from the host to the remote machine with.

SOAP is based on XML (eXtensible Markup Language) to represent the data and TCP/IP

(Transmission Control Protocol/ Internet Protocol) to transmit the data. The user does not

need to run every process on his own machine or program an interface for the program he

wants to implement in his own code. Sometimes it is reasonable to outsource some pro-

cesses to either conserve system resources or to reduce dependencies of software the user

might need to install elsewise. In this thesis SOAP is used to save the user from installing

TauP which is a program to compute travel times and which is written in Java™. Even

though Java™ is also system platform independent it is rather to spare the user the installa-

tion and configuration of additional software.

7

3. Fundamental seismic theory behind the scene

To understand the mathematical and general connection of the routines used in this pro-

gram we need to recapitulate the fundamental theories and algorithms. Due to the limita-

tion of this bachelor’s thesis, only the most important formulae are revised.

3.1. Distance and travel times

To obtain the corresponding time-window for a specific earthquake, we need to know the

latitude, longitude and depth of the event source and the longitude and latitude of the seis-

mic station recording the seismic event. There are a number of formulae that are able to

calculate accurate azimuths and distances on the WGS84 ellipsoid. One formula that works

with an accuracy of a few millimeters, ranging within a distance of a few cm to 20.000km

,is the Vincenty’s formulae. As we want to know the distance from the event source to our

seismic station we are confronted with an inverse problem. The formula to calculate the

epicentral distance s from source to station is given by

 () (1)

where b is the length of the minor axis of the ellipsoid and the angular distance on the

sphere. (Wikipedia, 2010) There are several models to calculate the ray path for a specific

phase velocity. But we only need the arrival times of the corresponding phases, especially

the last phase to obtain the parameter for the time-window. To derive it, we just need to

divide the phase velocity by the distance.

3.2. Instrument response

Modern seismographs like the STS-2 Streckheisen seismometer located at Wettzell, Ger-

many, are designed to achieve a linear response to Earth motions over a wide frequency

band. It is desirable to have an instrument as sensitive to be able to record below typical

Earth noise levels and at the same time be able to record large earthquakes. To obtain such

8

results modern seismograms use force-feedback designs in which the mass is maintained at

a fixed point. Thus the measurement is not done by measuring the amplitude of the mass

due to seismic activity but the force that is required to keep the mass at the fixed point.

Consequently the STS-2 uses three identical mechanical sensors to measure the horizontal

and vertical components of a seismic event. Furthermore the output proportional to veloci-

ty is not filtered and the feedback system delivers it directly from the feedback loop. The

response from the seismometer is defined by a corner frequency from 8.33 mHz up to 50

Hz. (STS-2 Manual, 1995) The instrument’s response can be defined in terms of the rela-

tionship between digital counts in the recorded time series and the actual ground motion of

the Earth. The gain of an instrument is the ratio between the digital counts and the meas-

urement of the ground motion. All information specifically oriented and calibrated sensors

are described by the complete instrument’s response function which is embedded in the

seismic record that can be downloaded from datacenters. To clear the time series and ena-

ble the seismologist to further process the data we have to subtract the instrument response

function given by poles, zeros, gain and damping. Thus we convert poles and zeros to fre-

quency response and the resulting output contains the frequency zero which is the offset of

the time series. For the G-ring no instrument correction is necessary because of the uni-

form transfer function of optical sensors due to a mass-less recording system. The raw data

is converted and scaled correctly to compare with the seismometer’s data.

3.3. Rotation of horizontal components

To rotate the North- and East-Component of a seismogram to Radial and Transversal com-

ponents, we need to calculate the back-azimuth. The back-azimuth is the angle measured

between the vector pointing from the station to the source and the vector pointing from the

station to geographic north. To compute the back-azimuth ObsPy uses the WGS84 ellip-

soid model and the algorithm from the Geocentric Datum of Australia Technical Manual.

The rotation of the seismograms itself for the radial component r and the transversal com-

ponent t is done by

 (

) (

) (2)

9

 (

) (

) (3)

3.4. Estimation of spectra

To identify periodicities in the seismic data and estimate e.g. the Earth’s normal modes, we

need to calculate the logarithmic spectrum of the transversal and rotational component.

This is done by filtering the record by removing all energy near and above the Nyquist

frequency first and then using a sampling interval so that the Nyquist frequency lies above

the highest frequency in the original data. Then the data gets split into NFFT (Nonequi-

distans Fast Fourier Transform) length segments, and computed for the power spectral

density (PSD) by Welch’s average periodogram method (Welch, 1967). Each segment is

then detrended by removing a best fit line and windowed by x times with the hanning win-

dow of the time sequence. So the sequence is tapered to smooth the ends of the time series

to zero which reduces spectral leakage but broadens central peaks. The last step pads the

time series with zeros to make the number of samples a power of 2 for the FFT (Fast Fou-

rier Transform). This also smooth the spectrum by interpolation while not increasing the

actual resolution, but giving more points in the corresponding plot.(Bendat et al., 1986;

Shearer, 2009; Gubbins, 2008)

3.5. Cross correlation

In signal processing, cross correlation is a measurement technique to check the similarity

of two given time sequences. Here we want to check if the rotated horizontal components

correlate with the rotation rate at the same time. The cross-correlation of two functions

 ()and () is equivalent to the convolution of () and (). The cross correlation

of two time series a and b is given by

∑

(4)

10

where k is called the lag, N and M are the lengths of a and b, and the sum is taken over all

possible products. (N + M - 1) (Shearer, 2009)

The correlation coefficient for the whole seismogram is equal to the cross correlation nor-

malized function. It returns the value 1 if two sequences are perfectly correlated and iden-

tical. The correlation coefficient is defined as

∑

√∑ ∑

(5)

If there is a perfect correlation of two time sequences, but in general it is consid-

ered as | | . (Shearer, 2009)

The empiric correlation coefficient used for computing the sliding time window is defined

by

∑ (̅)(̅)

√∑ (̅) ∑ (̅)

(6)

With this formula (Wikipedia, 2010) we calculate the correlation of all 600 samples (30s)

and plot the highest correlation value of each window. The resulting function is then plot-

ted underneath the superposition of the transversal acceleration and rotation rate to provide

a good overview.

4. Operating mode of the program

The program was written and tested under a Windows™ environment with several packag-

es installed. To run the program it is inevitable to ensure to have installed all necessary

dependencies. It is highly recommended to run the program under a 64bit system because

the program needs a lot of system memory to calculate and plot the spectrograms. Under

the precondition of a 64-bit enabled processor and more than three Gigabytes of RAM

(Random-Access-Memory) it is recommended anyway. For a 32-bit Windows™ system

you have to consider that only 3.5 GB of RAM could be addressed by Python and the pro-

gram could break the operation because of a memory error.

11

The essential programs you need to install and that are tested are:

 Python 2.6.5

 Numpy 1.4.1

 SciPy 0.8.0

 LXML 2.2.7

 Matplotlib 1.0.0

 pyPDF 1.12 (optional and only if you want to convert the plots to PDF)

4.1. Introduction to the operating mode

To give you a quick overview of the operating mode without looking in the code of the

program in detail, Figure 1 provides you a schematic sketch of the routines used to gener-

ate the output. First of all the user defines some core variables the script needs to operate.

Therefor he needs to type in the origin UTC (Universal Time Coordinated) time of the

earthquake he is interested in, the longitude and latitude, depth and the event name. These

values can be obtained from the WebDC web service or an email alert system like the one

provided by the GFZ Potsdam1. Optionally he can specify a personal directory for the de-

sired event on the user’s machine. If no directory is defined the script would write every

data to the directory where the script got executed.

1
 GFZ Potsdam – Earthquake Bulletin: http://geofon.gfz-potsdam.de/db/eqinfo.php

12

Figure 1 Schematic sketch of the operating mode

13

4.2. TauP web service

The purpose of the TauP web service, operated by ORFEUS, is to emphasize the use of

their SOA (Service Oriented Architecture) and to directly access the backbone services.

Typically a user is just interested in the upper layer of the architecture provided by

ORFEUS. But our script needs a machine-to-machine-communication to calculate every-

thing in the background without any further work for the user. Therefore we need a direct

connection to the ORFEUS services to simulate and calculate the travel times we need to

further process our own routines. This direct connection to the ORFEUS servers is provid-

ed by the Taup WS2. It offers the possibility to compute arrival times using a few default

velocity models.

4.2.1. How TauP works

TauP is a Java™ based software package developed by the University of South Carolina.

With the package the user is able to compute and calculate seismic travel times for every

single phase of an earthquake The method behind TauP is described by Buland and Chap-

man (1983). The IASPEI ttimes package is a widely-used implementation of the method-

ology.

With TauP the user could extract derivative information, such as ray paths through the

earth, pierce and turning points, as well as travel time curves .(Crotwell et al. 1999). But

the web service only offers the possibility of calculating travel times. Since this is the only

reason for using this service, it serves our needs.

4.2.2. The choice of the model

There are two default models available for the simulation of travel times. The first one,

iasp91 was developed by Kennett and Engdahl (1991) and the second one ak135 by Ken-

nett et al. (1995). Both models can be downloaded from IRIS (Incorporated Research Insti-

tutions for Seismology)3.

The second model ak135 “gives a significantly better fit to a broad range of phases than

2
 Taup WS: http://www.orfeus-eu.org/wsdl/taup/taup.wsdl

3
 IRIS –DMC: http://www.iris.edu/software/downloads/processing/

14

provided by the iasp91 or sp6 models … The differences in velocity between ak135 and

these models are generally quite small except at the boundary of the inner core, where re-

duced velocity gradients are needed to achieve satisfactory performance for PKP differen-

tial time data.”4 Thus in general, the ak135 tables represent an update of the iasp91 model

and try to match the behavior of a wider range of seismic phases. It is a radially stratified

velocity model and provide a consistent basis for all phases. The P wave travel times are

very similar to isap91, but changes in S and core phases justify the use of the newer ak135

model. To provide an example of the single phase arrival times of a specific earthquake,

we compute the arrival times with the ak135 model for a seismic event at Nicobar Islands,

India Region at 318.67° epicentral distance from Wettzell, Germany and a depth of 11 km.

As you can see in Table 1, the perfect time window for this event should be about 3250s

from origin time.

 delta # code time(s) min s dT/dD dT/dh d2T/dD2

 318.67 1 P 465.59 7 45.59 8.2118 -1.56E-01 -4.55E-03
 2 pP 469.01 7 49.01 8.2181 1.56E-01 -4.55E-03
 3 sP 470.47 7 50.47 8.2167 2.88E-01 -4.55E-03
 4 PP 561.11 9 21.11 10.8373 -1.42E-01 -6.30E-03
 5 PnPn 565.71 9 25.71 11.6905 -1.37E-01 -2.53E-03
 6 PP 569.72 9 29.72 9.2174 -1.51E-01 -4.28E-02
 7 PcP 583.74 9 43.74 3.2722 -1.70E-01 5.87E-03
 8 ScP 813.63 13 33.63 3.9661 -2.95E-01 6.31E-03
 9 PcS 815.02 13 35.02 3.9665 -1.69E-01 6.31E-03
 10 S 840.70 14 0.70 14.8320 -2.66E-01 -3.26E-03
 11 pS 844.82 14 4.82 14.8480 1.09E-01 -3.27E-03
 12 sS 846.55 14 6.55 14.8413 2.66E-01 -3.27E-03
 13 PKiKP 1011.45 16 51.45 0.8895 -1.72E-01 1.53E-02
 14 pPKiKP 1015.24 16 55.24 0.8894 1.72E-01 1.53E-02
 15 sPKiKP 1016.62 16 56.62 0.8894 2.98E-01 1.53E-02
 16 SS 1025.70 17 5.70 19.8944 -2.38E-01 -2.58E-03
 17 SS 1032.48 17 12.48 22.2673 -2.20E-01 -1.35E-03
 18 SnSn 1034.45 17 14.45 24.0409 -2.04E-01 -1.05E-02
 19 SS 1035.45 17 15.45 23.7658 -2.07E-01 6.38E-03
 20 SS 1038.39 17 18.39 16.6262 -2.57E-01 -7.82E-03
 21 ScS 1069.65 17 49.65 6.0569 -2.93E-01 3.13E-03
 22 SKiKP 1223.22 20 23.22 0.9343 -2.97E-01 1.48E-02
 23 PKKPdf 1895.93 31 35.93 -0.9490 -1.72E-01 -1.40E-02
 24 SKKPdf 2107.73 35 7.73 -0.9011 -2.98E-01 -1.46E-02
 25 PKKSdf 2109.11 35 9.11 -0.9010 -1.72E-01 -1.46E-02
 26 SKKSdf 2320.80 38 40.80 -0.8575 -2.98E-01 -1.53E-02
 27 P'P'df 2401.12 40 1.12 -1.2221 -1.72E-01 -1.18E-02
 28 P'P'ab 2472.90 41 12.90 -4.3499 -1.68E-01 4.68E-02
 29 S'S'df 3254.04 54 14.04 -0.9656 -2.97E-01 -1.38E-02

Table 1 Simulation of arrival times with the ak135 models for all phases of the Nicobar Islands event on

 2010-06-12. dT/dD describes the travel time with respect to distance, dT/dh the travel time with respect

 to source depth and d2T/dD2 the second derivative of travel time with respect to distance.

4
 Text quotes are from Kennett and Engdahl (1991) & Kennett et al. (1995)

15

To complete the review of the ak135 model, a plot of all phases dependent on epicentral

distance and time for the whole earth model described by ak135 is provided. As you can

see in Figure 2, the interesting P-wave, S-wave and core-wave phases should be visible on

the recording seismogram within 40min. This conclusion correlates with the example data

of Nicobar Islands in Table 1.

Figure 2 Plot of all simulated phases calculated with the ak135 model

16

Now that we know the individual arrival times of all phases, we can automatically calcu-

late the corresponding time-window for every seismic event computed with the program.

As tested for several depths and distances the S’S’df phase always arrives in an interval of

3240-3260 seconds. The assumption that every direct phases arrives within 3260 seconds

results in a time window of 3260 seconds. Unfortunately the real case scenario differs from

our theory and additional time needs to be added to analyze the seismic data in total.

Since we want to be able to see every phase of the event, we start 300 seconds before

origin time, then double the S’S’df phase time and add additional time for the individual

distance of the event from the seismic measurement station in Wettzell, Germany.

Our formula used to calculate the time window is not based upon a theory but reflects the

experiences gained during the testing of the script.

So for the time window we get the easy formula

 (7)

where θ is the time window in seconds, μ is the S’S’df phase arrival and γ is the event dis-

tance converted 1:1 from km to s.

17

4.3. ObsPy routines

After computing the arrival times for the single phases we have all parameters to start our

database query and to receive the seismic time series. For the WebDC query we use the

ArcLink client routine from obspy.arclink.

The client class only needs the origin time and the time window before and after it. To get

a better overview we set the prior time window to a fixed value of 300s and the past time

window to the double of the last arriving phase plus an additional 300s window. For our

example in Table 1 we therefor receive a 6850s time window. (Figure 3) We double the last

phase value to not only receive the arrivals of the first incomes but rather any reflected

phase of the event.

Figure 3 Uncorrected BHN component of the Wettzell seismometer for Nicobar Islands event at 2010-06-16 with

 UTC time on the time axis and some undefined amplitude values by now.

After receiving all four channels (three from the seismometer and one for the Ringlaser)

and writing them to disk, we need to correct them for their instrument response. As we get

the data as integer values that are transformed to a stream/trace object within ObsPy we

need to transform them to float64 NumPy arrays and demean them. The demeaning is nec-

essary to obtain a smooth signal without any offset at the beginning and at the end of the

time series. The next step before correcting the signal for the instrument response is to fil-

ter the signal through a bandpass filter from 100mHz to 40 Hz. This is done by ob-

spy.signal routine bandpass. The actual instrument correction is then done by corn-

Freq2Paz and seisSim that are also part of obspy.signal.

18

Now we have the corrected signals from all channels, even if we do not need a correction

for the Ringlaser data due to its properties as an optical sensor. The next step is the rotation

of the horizontal components with rotate_NE_RT, where we need the BHN and the BHE

channel and the back-azimuth calculated with gps2DistAzimuth both from functions are

provided by obspy.signal.

Since the derivative of the rotated horizontal component should in theory be the same as

the rotation rate recorded from the Ringlaser, the rotated signal is differentiated using a

core NumPy routine np.diff. As it is common to compute a spectrogram for every time se-

ries, we also provide a calculation of the spectra of the transversal acceleration and rotation

rate. This is done by the spectrogram class within obspy.imaging.

4.4. Cross correlation in a moving time window

As one of the specifications of the program should be a cross correlation coefficient in a

sliding time window along the time series, it has been necessary to develop an additional

class to provide this feature. ObsPy does not include such a function so far.

After defining a time window of 30s and determining the automated moving steps until the

end, every time window is computed with np.corrcoef which is in general the same as

equation 7. The corresponding maximum value of the correlation is then plotted under-

neath the correlated super positioned time series.

4.5. Performance of the program

As mentioned before, the performance of NumPy is similar to machine-oriented languages

like C because it uses pre-compiled C code. That might be correct in theory but in the test-

ing and development environment used for this purpose, there had been some unlovely

performance leaks using all provided ObsPy classes.

To make the results comparable we need to introduce the machines the code had been test-

ed on. (Table 2) A very surprising fact of the Intel® computer is, that although he has dual-

core capabilities and AMD64 support, it only uses one core and as a consequence halve the

19

potential computing power of the CPU. Since the Intel® CPU is generally much faster than

the old AMD CPU, there are almost no performance leaks as expected before.

Intel® Core™2 Duo T7300 @ 2.00 GHz AMD Athlon™ X2 @ 2,41GHz

Windows 7 Professional 64bit Windows 7 Ultimate 64bit

2x DDR2 800 Hexon 2048 MBytes 2x DDR2 800 Corsair 1024 MBytes

Seagate ST160823AS @7200 RPM WD Raptor X 150 @10000 RPM

Python 2.6.5 [MSC 64bit AMD64] Python 2.6.5 [MSC 64bit AMD64]

Table 2 Details of the benchmarked computers the script has been tested on

To illustrate the single steps and their resulting performance, we measure the time needed

for every single process to be computed by one of the machines. This measurement is done

by a virtual stopwatch correlated with the output of the script. To compare both perfor-

mances, a random 5000s long sample from the WebDC database mirrored at the LMU is

taken (the server is much more stable than the one hosted by webdc.eu). Both machines

will compute exactly the same routines and are using the same architecture. This is one of

the main specifications of the benchmark.

Figure 4 Benchmark results from a synthetic 100.000 sample noise test

During our benchmark (Figure 4) with a 5000s long random time series, with nothing more

than noise, we got acceptable results in the computing time and just needed 216 MB of

RAM. With a real seismic event data from Nicobar Islands, India Region with coordinated

7.7N and 92.0E and a 6850s long time series we cannot compute the logarithmic diagram

8,71

9,15

17,66

20,73

22,92

23,35

24,10

25,10

33,19

26,87

41,56

8,89

9,32

14,57

17,75

19,28

20,15

20,59

21,30

29,31

22,74

36,31

0 10 20 30 40 50

retrieving waveforms

writing MSEED files

unrotated 4C plot

retrieving paz

instrument correction and plots

superposition and vs plot

xcorr in sliding time win

spectra of TA (w/o log)

spectra of TA (with log)

spectra of RR (w/o log)

spectrac of RR (with log)

AMD computing time (in s)

Intel® computing time (in s)

20

any longer and need 829 MB of RAM to pass all the steps. The log-view of the spectro-

gram had to be interrupted after 2 hours computing time and 6,5 Gbytes RAM usage.

Figure 5 Computing time of calculations done during Nicobar Islands processing

The heavy performance leaks experienced within computing real seismic data have their

origin in the insufficient memory available and so the data got swapped on the hard drive

which is about a factor 100.000 slower than the RAM. (mechanical device vs. electronic

device) The read/write speed of a hard drive is much slower than RAM, and the technology

of a hard drive is not equipped to access small pieces of data at a time. If the system has to

rely too heavily on virtual memory, you will notice a significant performance drop. If you

do not have enough RAM installed in your machine the operating system has to constantly

swap information back and forth between RAM and the hard disk. The process is called

trashing and slows down your computer. Since the logarithmic diagram of the spectrogram

produces a very large data set with thousands of small pieces, the missing memory causes

an unacceptable performance. In another example with 150.000 samples (7500s) the script

was run for nearly two days (42 hours) without any result and the decision was made to

interrupt the computing. Since about 20 GBytes of RAM would be needed in the men-

tioned case to calculate the spectrogram with full speed, it is not recommended to run the

script on a single desktop machine. Python in general is able to use multi-threading and

multiple cores, but the architecture for it is just in development and not fully supported yet.

Furthermore the cluster for the calculation is not accessible by now since the script needs a

Python environment. In summary, the average computing time for all steps of the script for

12,96

13,29

17,55

20,84

26,74

29,91

31,66

36,59

0

43,15

0

0 10 20 30 40 50

retrieving waveforms

writing MSEED files

unrotated 4C plot

retrieving paz

instrument correction and…

superposition and vs plot

xcorr in sliding time win

spectra of TA (w/o log)

spectra of TA (with log)

spectra of RR (w/o log)

spectrac of RR (with log)

Computing time on Intel® machine (time in s)

Nicobar Islands 7.5 2010-06-12
(137.000 samples)

21

a common seismic event lies around 1-3 minutes if the logarithmic mode for the spectro-

gram is turned off.

5. The output of the program

All the previous work leads to the output and plots of the script and now the result of the

processed seismic data with the script is discussed in detail. Since we used the Nicobar

Islands 7.5 Magnitude earthquake from 2010-06-16 for earlier demonstration, we will now

continue using it and explain every plot separately.

5.1. Command line response

All the input and written output is done in the command line or shell of your operating

system. First of all, the user sets the global event variables that the script needs to operate

normally.

The input of the event name results in the global title on every plot. So it is quite important

to set a valid and easily understandable variable. In our example Nicobar Islands 7.5 Mag

2010-06-12 is used as it describes shortly what event is displayed on the plots.

The second variable is the event time. It names the origin time of the seismic event in UTC

time. A valid input for our example would be 2010-06-12 19:26:47. Other time formats are

also supported of course, but they might not be that comprehensible. If you want to input

the data in another format, please look up the Obspy manual and especially the class

UTCDateTime under obspy.core.

The third variable is the event depth that you need to input in kilometers.

The fourth variable you need to enter is the event latitude, where values on the northern

hemisphere are put in as positive value (e.g. 7.7 for 7.7N) and values on the southern hemi-

sphere as negative values (e.g. -9.2 for 9.2S).

The last value the user needs to input is the longitude of the event in the same manner as

the latitude: a positive value for the eastern component and a negative value for the west

component.

22

After executing the last variable the program starts to operate. The output of the program

summarizes the event time and coordinates for you and optionally returns the path the data

would be saved in if you declared it. If set on default, the script would save every data in

the directory it got executed.

The first real calculation and output is done in the next line. The user receives the event

distance of the event location to our measurement station in Wettzell, Germany located

49.144°N and 12.878°E. These values are default values and cannot be changed within the

command line.

The following output lines (Figure 6) are just visual feedback for the user to follow the

further progress of the program. Due to the characteristics of the client service of ObsPy

and the sometimes strange behavior of the ArcLink protocol, the program might interrupt

as it tries to receive waveforms or PAZ (poles and zeros) for the instrument correction. The

user only needs to start the script again to process further. A loop of the program appears to

be needless during development since even an enhancement of the timeout interval seems

useless and causes the same timeout error over and over again.

Figure 6 Example command line output of the Nicobar Islands event

23

5.2. Unaffected seismic streams

To receive a quick overview of all data downloaded from the servers, the first plot provides

the user with an unaffected display of the four different seismic streams. Here the user

could pre-check if the download of the data went right. Towards the following display of

the data, the time axis is presented with original UTC time here and the amplitude axis is

given in integer values directly received from the stored sensor data.

Figure 7 Unaffected seismic streams for the Nicobar Islands event

24

5.3. Instrument correction

To really work with the data and gain an excess value we need to correct the data for their

instrument response (Figure 8-10). This is done by the next step and results in the follow-

ing plots. The upper seismogram is the original seismogram received from the storage

server and the second seismogram is the instrument corrected data with a now defined am-

plitude axis in nm/s. The corrected seismogram is now used for all further steps and calcu-

lations. Unlike the STS-2 channels, the rotation rate is normally presented in x10
-4

 rad/s,

but here (Figure 11) we doubled the values due to the fact, that “transversal acceleration

and rotation rate should have the same waveform and their amplitudes should scale propor-

tionally to phase velocity depending on wave type” (Igel et al., 2007). Thus the user is able

to correlate the two time series he is interested in by just looking at them.

Figure 8 Corrected signal of the first horizontal component of the seismometer

25

Figure 9 Second horizontal component of the seismometer

Figure 10 Vertical component of the seismogram

26

Figure 11 Ringlaser component with fixed nm/s axis for better coherence with other channels

5.4. Transverse acceleration vs. rotation rate

One of the main guidelines and ideas behind this thesis was the consideration of the trans-

versal acceleration and the rotation rate measured by the Ringlaser. To obtain the transver-

sal acceleration we rotate the horizontal seismometer components and then differentiate the

result.

Due to the fact that this step is one of the most important ones the script provides three

plots for it. One plot displays both time series separately (Figure 12), the second one is a

superposition plot of the two signals (Figure 13) and the third one is a superposition plot

with a sliding time window directly underneath the superposition to show the correlation

coefficient and their coherence (Figure 14). The numerous peaks in the maximum cross-

correlation coefficient are an evidence for a good correlation of both time series.

27

Figure 12 Seperated transveral acceleration & rotation rate time series

Figure 13 Superpostion of TA (red) and RR (black)

28

Figure 14 As we see here the correlation coefficient is very high since P-wave arrival. Even if the main phases

 arrived the coefficient stays high.

5.5. Spectrograms

The periodicities of the time series are displayed by plotting the spectra of both signals.

With the spectrograms you cannot only determine the appearing frequencies but also the

specific time these frequencies dominate. Although the logarithmic axis of the spectrogram

is more significant than the linear axis, it is quite not possible to provide a logarithmic plot

because of the problems mentioned in Chapter 4.5. But we still clearly see that frequencies

from 0.01Hz – 0.5Hz dominate both spectrograms (Figure 15 and Figure 16). This fact

accords to the general assumption of tele-seismic events. (Shearer 2009)

29

Figure 15 In the spectrogram of the transversal acceleration you can clearly determine the dominant frequencies

 from 0.01Hz to a maximum of 2Hz around the S wave arrival

Figure 16 The dominant frequencies of the rotation rate are nearly equal to the frequency spectrum of the transversal

 acceleration

30

6. Using the program

After introducing the different outputs the program offers, we would like to test the pro-

gram of their relevance for real case scenarios. As mentioned several times before, we

want the program to provide the user a quick and easy method to analyze seismic events

for their coherence between transversal acceleration and rotation rate measured by the

Wettzell STS-2 seismometer and Ringlaser. Since seismologist usually are just interested

in huge events (because of their better signal-to-noise ratio) with a magnitude greater than

7.0, we need to check the WebDC database or alternatively our email alert-systems men-

tioned before. Another criterion the dataset needs to comply with is that its source is not

located that deep in the earth crust. For now we are only interested in shallow earthquake

events not deeper than 70km. Unfortunately the script covers only a timespan from 2010-

04-14 to now due to a readjustment of the internal storage structure of the four channels we

are interested in.

The Wettzell Ringlaser data had been renamed according to the FDSN (Federation of Digi-

tal Broadband Seismographic Networks) rules (Email contact with Wassermann J., 2010)

and the old data is actually available, but if the script tries to access the data it ends up with

a metadata error. By trying to manually access the data via web query on the WebDC por-

tal, we receive datasets without any content. Thus we need to narrow our search request to

a very limited timespan until the problem is fixed.

6.1. Recent past seismic events

Despite our very limited timespan we receive several seismic events that fit our specifica-

tions (Table 3). Since we already used the Nicobar Islands event for explaining the operat-

ing mode and output of the program, we now want to focus on the seismological work and

interpretation of the data. For this purpose we use two additional events. The Vanuatu Is-

lands event located 13.7°S and 166.7°E, and the Irian Jaya Region event located 2.2°S and

136.5°E. Both are tele-seismic events that were recorded by the Wettzell measurement

cluster and so there are ideal to analyze.

31

Origin Time UTC Mag Latitude

degrees

Longitude

degrees

Depth

km

Region Name

2010-08-13 21:19:37 7.1 12.5 N 141.5 E 32 South of Mariana Islands
2010-08-10 05:23:46 7.3 17.5 S 168.1 E 35 Vanuatu Islands
2010-07-23 23:15:10 7.4 6.8 N 123.2 E 642 Mindanao, Philippines
2010-07-23 22:51:12 7.4 6.4 N 123.5 E 576 Mindanao, Philippines
2010-07-18 13:35:03 7.1 6.0 S 150.6 E 55 New Britain Region, P.N.G.
2010-07-18 13:04:11 7.1 6.0 S 150.4 E 44 New Britain Region, P.N.G.
2010-06-16 03:16:30 7.2 2.2 S 136.5 E 19 Irian Jaya Region, Indonesia
2010-06-12 19:26:47 7.5 7.7 N 92.0 E 11 Nicobar Islands, India Region
2010-05-27 17:14:48 7.1 13.7 S 166.7 E 49 Vanuatu Islands
Table 3 Red marked events are the ones that fits best to our specifications

The Irian Jaya Region event, now called as IJR event, has an event distance of 12573km

and a depth of 19km. Doing the SOAP query we get the last phase arriving after 3256 se-

conds. The ideal time window (after Eq. 7), dependent on arrival times and distance, we

want to look at is about 8080 seconds long.

The second event at Vanuatu Islands (VI) located at 13.7°S and 166.7°E, has an event dis-

tance of 15407km and a depth of 49km. The last phase arrives at 3260 seconds, so the ideal

time window would be about 8360 seconds.

As most of the plots are not necessary for our analysis of the coherence of transversal ac-

celeration and rotation rate we left them aside. If you are interested in the other outputs

please look at the CD attached with this thesis. Every event got its own folder with all data

included.

6.2. Observations using the program

As you can see (Figure 17) at first sight, the signal-to-noise ratio of the IJR event is not as

nice as the ratio of the Nicobar Islands event. As a result the cross correlation coefficient

does not reach the good values of the example event over the whole time window. The

peaks around 4000s where also the cross correlation coefficient is very high have to be the

arriving love waves. The whole seismogram differs in its characteristics from the Nicobar

Islands example. Maybe the event distance is too high for a magnitude 7.2 earthquake to be

recorded accurately. But the program operates quite well and fulfills its original purpose to

offer a quick overview before looking at the seismogram in detail.

32

Figure 17 Cross correlation plot of the IJR event

Figure 18 Spectrogram of the transversal acceleration component with interesting frequency-bands at

 6.5Hz and 3.7Hz

33

Another interesting point is the comparison of both spectrograms (Figure 18 and Figure

19). As we see the expected low frequencies on the rotation rate plot, we suddenly get a

noisy transversal spectrogram with two dominant frequency-bands at 6.5Hz and 3.7Hz.

Almost every single frequency could be observed by zooming into detail. Since only the

detection of such characteristics with the developed program should be part of this chapter,

we leave it at that.

Figure 19 Spectrogram of rotation rate with nothing more than the low frequency-band from 0.01Hz to 0.5Hz

The second event at Vanuata Islands is a very good example for the limits we can be con-

fronted with. While the signal-to-noise ratio of the Ringlaser for the IJR event was that

good that you could “see” the seismic event and nearly all their phases we now have diffi-

culties detecting the event. There is not much more than regular noise and the cross corre-

lation values are consequently very bad of course (Figure 20). It seems like the resolution

of the Ringlaser is reached although it is able to detect rotation rates as small as 10-10 rad s-

1/√ . (Igel et al., 2007)

34

Figure 20 No significant excess value could be retrieved by looking at this noise-like seismogram

Figure 21 Again we can see the 7Hz frequency-band and the expected tele-seismic low frequency-band

35

Figure 22 The rotation rate has a freqency range from 0.01Hz to 1Hz

Even if it does not really make sense to look at noisy seismograms in detail, we can at least

detect the 7Hz frequency-band in the seismometer recording again (Figure 21 and Figure

22).

These interesting observations could be made within seconds after computing them with

the program. Now a seismologist could examine the earthquakes he is really interested in

in detail and come to his final conclusion dependent on his previous intension. The VI

event for example would be left aside and classified as inoperative, whereas the Nicobar

Islands event, our previous example, could be worth a second inspection.

36

7. Conclusions

In conclusion, the present program has its relevance for the seismological community as it

delivers a very fast way to check seismic events regarding their pertinence for the relative-

ly new field of rotational ground motion study.

There are some possible improvements someone could implement of course. So a GUI

would simplify the usage of the program and the complicated way of publishing the data

over the single outputs is not the ideal. For the last point there is a solution of a script con-

verting the single Postscript files to one PDF (Portable Document Format) file. You could

find that script and the dependent Python program pyPDF on the CD. Since maybe a seis-

mologist wants to use a single plot, the output of single Postscript files is not that bad.

During the development and testing of the program we reached the limits of the current

ObsPy version and the interaction between a Python script and a data center, in this case

operated by ORFEUS (i.e. the problems with the logarithmic view of the spectra and

timeout problems during operating with the ArcLink client of ObsPy).

Besides we reached the limits of current Ringlaser technology, as we tested our program

with the Vanuata Island event.

This thesis is a good example for the inertial idea behind ObsPy. We developed a program

that is based on Python and ObsPy core routines.

Maybe this program will be the base of a greater project for further development initiated

by the rotational seismology community.

37

8. Acknowledgments

This work was supported by the Department of Earth and Environmental Sciences and its

employees. A special thank appertains to the ObsPy development team, that exists of Dr.

Robert Barsch, Moritz Beyreuther, Tobias Mergies and Lion Krischer. If I had problems

during the development they helped me out with advices and their experience.

Furthermore I am grateful for my supervisors Prof. Dr. Heiner Igel and Dr. Joachim Was-

sermann for their advices and in special Prof. Dr. Igel for the issue of the bachelor thesis.

A further acknowledgment goes to Hanna Ziegowski who gave me advices regarding the

phrase of some topics. I also want to thank her for the review of my thesis.

In conclusion, I also want to thank every single developer of the tools, programs and

scripts I used during the development of this thesis. The development of my program is

applicable based on excellent programming skills by all the developers of these programs.

38

9. References

Books

Gubbins, David (2008): Time Series Analysis and Inverse Theory for Geophysicists. 3.
Edition.: Cambridge University Press.

Shearer, Peter (2009): Introduction to Seismology: Cambridge University Press.

Tosi, Sandro (2009): Matplotlib for Python developers. Build remarkable publication
quality plots the easy way. Birmingham: Packt Publ.

Weigend, Michael (2008): Python ge-packt. [schneller Zugriff auf Module, Klassen und
Funktionen ; Tkinter, Datenbanken und Internet-Programmierung ; für die Versionen Py-
thon 3.0 und 2.x]. 4., updated edition. Heidelberg: mitp.

Manuscripts

Kurrle, D. Ferreira A. Igel H. J. Wassermann U. Schreiber (2010): First observations of
Earth’s free oscillations on a ring laser system. Unpublished manuscript, 2010.

Beyreuther, M.; Barsch R.; Krischer L.; Megies T.; Behr Y.; Wassermann J. (2010):
ObsPy: A Python Toolbox for Seismology. Unpublished manuscript, 2010.

Articles

Bendat, J. S. (1982): Random Data - Analysis and measurement procedures . In: Current
Contents/Engineering Techology & Applied Sciences, H. 25, S. 16.

Buland, R., and C. H. Chapman (1983). The computation of seismic travel times. In: Bulle-
tin of the Seismological Society of America Vol. 73, p. 1.271-1302

Crotwell, H. P. T. J. Owens and J. Ritsema (1999): The TauP Toolkit: Flexible seismic
travel-time and ray-path utilities. In: Seismological Research Letters, H. Vol 70, S. 154–
160.

Fang K; Brown R. J. (1996): A new algorithm for the rotation of horizontal components of
shear-wave seismic data. In: CREWES Research Report, H. Vol 8, p. 12-1 - 12-14.

Igel, H.; Schreiber, U.; Flaws, A.; Schuberth, B.; Velikoseltsev, A.; Cochard, A. (2005):
Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003. In:
Geophysical Research Letters, Jg. 32, H. 8.

39

Igel, Heiner; Cochard, Alain; Wassermann, Joachim; Flaws, Asher; Schreiber, Ulrich; Ve-
likoseltsev, Alex; Dinh, Nguyen Pham (2007): Broad-band observations of earthquake-
induced rotational ground motions. In: Geophysical Journal International, Jg. 168, H. 1, p.
182–196.

Kurrle, D.; Igel, H.; Ferreira, A. M.G.; Wassermann, J.; Schreiber, U. (2010): Can we es-
timate local Love wave dispersion properties from collocated amplitude measurements of
translations and rotations? In: Geophysical Research Letters, Jg. 37.

Lee, W. H.K. (2009): A Glossary for Rotational Seismology. In: Bulletin Of The Seismo-
logical Society Of America, Jg. 99, H. 2B, p. 1082–1090.

Welch, P. D. (1967): The Use of Fast Fourier Transform for the Estimation of Power Spec-
tra: A Method Based on Time Averaging Over Short, Modified Periodograms. In: IEEE
Transactions on Audio Electroacoustics, H. Vol. AU-15, p. 70–73.

Internet sources

Article: Korrelationskoeffizient. In: Wikipedia, Die freie Enzyklopädie (2010).
URL:http://de.wikipedia.org/wiki/Korrelationskoeffizient. Last visited: 2010-08-21 15:34
UTC.

Article: Vincenty’s formulae. In: Wikipedia, The Free Encyclopedia (2010). URL:
http://en.wikipedia.org/wiki/Vincenty’s_formulae/. Last visited 2010-08-21 15:37 UTC.

Documentation: Python v2.6.5 Documentation (2010). URL:
http://docs.python.org/release/2.6.5/. Last updated 2010-03-19. Last visited: 2010-08-17
17:54 UTC.

Documentation: Numpy and Scipy Documentation (2010). URL:
http://docs.scipy.org/doc/. Last visited 2010-08-20 15:12 UTC.

Documentation: Python framework for processing seismological data (2010). URL:
http://svn.geophysik.uni-muenchen.de/trac/obspy/wiki/. Last visit 2010-08-21 19:57 UTC

Documentation: Matplotlib User’s Guide (2010).
URL: http://matplotlib.sourceforge.net/users/index.html. Last visited 2010-08-12 12:04
UTC.

Manual: Portable Very-Broad-Band-Tri-Axial- Seismometer – STS-2 Manual (1995).
URL: http://www.passcal.nmt.edu/webfm_send/488. Last visited: 2010-07-15 13:43 UTC.

Manual: Geocentric Datum of Australia Technical Manual (2009) URL:
http://www.icsm.gov.au/gda/gdatm/gdav2.3.pdf. Last visited 2010-08-15 12:23 UTC.

Source: TauP web service (2010). URL: http://www.orfeus-eu.org/wsdl/taup/taup.wsdl.
Last visited 2010-08-21 19:57 UTC.

i

Appendix

A. Source Code of the program

#Fix if you want to execute the script on Intranet machines

#import sys

#sys.path.append("/home/SOFTWARE/OBS/obspy/obspy/branches/symlink/")

from obspy.core import UTCDateTime

from obspy.arclink.client import Client

import numpy as np

import matplotlib.pyplot as plt

from obspy.signal import cornFreq2Paz, seisSim, gps2DistAzimuth, rotate_NE_RT, low-
pass, bandpass

from obspy.signal.util import xcorr

from obspy.imaging.spectrogram import spectrogram

print "Setting global event variables"

#Setting important variables from user

#path = raw_input("Enter path to save data: ")

event = raw_input("Enter event name: ")

UTCTime = UTCDateTime(raw_input("Enter event time (no data before 2010-04-14):
").strip())

depth = float(input("Enter event depth: "))

lat2 = float(input("Enter event latitude: "))

ii

#Check lat2 input

if lat2 > 90 or lat2 < -90:

 msg = "Latitude out of bounds! (-90 <= lat2 <=90)"

 raise ValueError(msg)

lon2 = float(input("Enter event longitude: "))

#Just a visual feedback for inputed data

#print "Path to save data: " , path

#print "Event name: " , event

print "Event time: " , UTCTime

print "Coordinates of event: " , lat2, lon2

#Computes backward azimuths between source and station

ba = gps2DistAzimuth(49.144, 12.878, lat2, lon2)

#Extracts distance parameter and converts to km

dist = float(ba[0]*1e-3)

print "Event distance (in km) from Wettzell, Germany: ", round(dist, 1)

#Creating dir with given path

#import os

#os.mkdir(path)

#Getting Data from ArcLink

client = Client('erde.geophysik.uni-muenchen.de', 18001)

#client = Client_Seishub()

iii

t=UTCTime

#import pdb;pdb.set_trace()

#Calculation of time window with fixed S'S'df phase

twin=(3260*2)+dist/10

#Getting all four components and save them to disk as MSEED for further actions

print "retrieving waveforms..."

bhn = client.getWaveform("BW", "WETR", "", "BHN", t - 300, t + twin)

bhe = client.getWaveform("BW", "WETR", "", "BHE", t - 300, t + twin)

bhz = client.getWaveform("BW", "WETR", "", "BHZ", t - 300, t + twin)

bjz = client.getWaveform("BW", "RLAS", "", "BJZ", t - 300, t + twin)

print "done"

#Setting path to created folder

#os.chdir(path)

print "writing MSEED files ..."

bhn.write('BW.WETR.BHN.mseed', format = 'MSEED')

bhe.write('BW.WETR.BHE.mseed', format = 'MSEED')

bhz.write('BW.WETR.BHZ.mseed', format = 'MSEED')

bjz.write('BW.RLAS.BJZ.mseed', format = 'MSEED')

print "done"

#Addding all traces to one stream and plot 4C-Plot

fc = bhn + bhe + bhz + bjz

fc.plot(outfile = '4C-plot.ps')

iv

print "unrotated 4C plot done"

#Retrieve PAZ for all STS-2 channels

print "retrieving PAZ..."

pazbhn = client.getPAZ("BW", "WETR", "", "BHN", t, t)

pazbhe = client.getPAZ("BW", "WETR", "", "BHE", t, t)

pazbhz = client.getPAZ("BW", "WETR", "", "BHZ", t, t)

pazbjz = client.getPAZ("BW", "RLAS", "", "BJZ", t, t)

print "done"

pazbhn = pazbhn.values()[0]

pazbhe = pazbhe.values()[0]

pazbhz = pazbhz.values()[0]

pazbjz = pazbjz.values()[0]

print "instrument correction ..."

#Subtracting mean from time series

bhn[0].data = bhn[0].data - bhn[0].data.mean()

bhe[0].data = bhe[0].data - bhe[0].data.mean()

bhz[0].data = bhz[0].data - bhz[0].data.mean()

bjz[0].data = bjz[0].data - bjz[0].data.mean()

#Apply bandpass from 0.01-40Hz

resbhn = bandpass(bhn[0], 0.005, 40, corners=4)

resbhe = bandpass(bhe[0], 0.005, 40, corners=4)

resbhz = bandpass(bhz[0], 0.005, 40, corners=4)

resbjz = bandpass(bjz[0], 0.005, 40, corners=4)

v

#0.005Hz instrument

one_hertz = cornFreq2Paz(.005)

#Correct for frequency response of the instrument

resbhn = seisSim(bhn[0].data.astype('float64'), bhn[0].stats.sampling_rate,

 pazbhn, inst_sim=one_hertz)

resbhe = seisSim(bhe[0].data.astype('float64'), bhe[0].stats.sampling_rate,

 pazbhe, inst_sim=one_hertz)

resbhz = seisSim(bhz[0].data.astype('float64'), bhz[0].stats.sampling_rate,

 pazbhz, inst_sim=one_hertz)

resbjz = seisSim(bjz[0].data.astype('float64'), bjz[0].stats.sampling_rate,

 pazbjz, inst_sim=one_hertz,

 no_inverse_filtering=True) #important because of empty PAZ, so just
resampling data

#Correct for overall sensitivity, nm/s

resbhn = (resbhn/1e4)/pazbhn['sensitivity']#resbhn *= 1e9/pazbhn['sensitivity'] #

resbhe = (resbhe/1e4)/pazbhe['sensitivity']#resbhe *= 1e9/pazbhe['sensitivity'] #

resbhz = (resbhz/1e4)/pazbhz['sensitivity']#resbhz *= 1e9/pazbhz['sensitivity'] #

resbjz = (resbjz/1e8)/pazbjz['sensitivity']#resbjz *= 1e9/pazbjz['sensitivity'] #

#Plot the seismograms (original and corrected data)

secbhn = np.arange(len(resbhn))/bhn[0].stats.sampling_rate

secbhe = np.arange(len(resbhe))/bhe[0].stats.sampling_rate

secbhz = np.arange(len(resbhz))/bhz[0].stats.sampling_rate

secbjz = np.arange(len(resbjz))/bjz[0].stats.sampling_rate

vi

plt.figure()

plt.subplot(211)

plt.plot(secbhn,bhn[0].data, 'k')

plt.title("WETR.BHN instrument correction")

plt.ylabel('STS-2')

plt.subplot(212)

plt.plot(secbhn,resbhn, 'k')

plt.xlabel('time [s]')

plt.ylabel('0.005 Hz Corner Frequency')

plt.suptitle('%s' % (event))

plt.savefig('BHN_instrument-correction.ps')

plt.figure()

plt.subplot(211)

plt.plot(secbhe,bhe[0].data, 'k')

plt.title("WETR.BHE instrument correction")

plt.ylabel('STS-2')

plt.subplot(212)

plt.plot(secbhe,resbhe, 'k')

plt.xlabel('time [s]')

plt.ylabel('0.005 Hz Corner Frequency')

plt.suptitle('%s' % (event))

plt.savefig('BHE_instrument-correction.ps')

plt.figure()

plt.subplot(211)

plt.plot(secbhz,bhz[0], 'k')

vii

plt.title("WETR.BHZ instrument correction")

plt.ylabel('STS-2')

plt.subplot(212)

plt.plot(secbhz,resbhz, 'k')

plt.xlabel('time [s]')

plt.ylabel('0.005 Hz Corner Frequency')

plt.suptitle('%s' % (event))

plt.savefig('BHZ_instrument-correction.ps')

plt.figure()

plt.subplot(211)

plt.plot(secbjz,bjz[0].data, 'k')

plt.title("RLAS.BJZ instrument correction")

plt.ylabel('RLAS')

plt.subplot(212)

plt.plot(secbjz,resbjz, 'k')

plt.xlabel('time [s]')

plt.ylabel('0.005 Hz Corner Frequency')

plt.suptitle('%s' % (event))

plt.savefig('BJZ_instrument-correction.ps')

print "instrument response corrected plots done"

###delete to free memory###

del bhn, bhe, bhz, bjz, resbhz

resbhe.resize((len(resbhn),), refcheck=False)

viii

#Rotate horizontal component and superposition of rotation rate & transversal acceleration

rot = rotate_NE_RT(resbhn, resbhe, ba[1])

###delete to free memory###

del resbhn, resbhe

#Differentiate rotated horizontal component to retrieve trans. acc.

ta = np.diff(rot[1], n=1, axis=-1)

#Fix for the amplitude axis for perfect superposition of both signals

ta *= -1e1

#trans. acc. & rotation rate plot

secta = np.arange(len(ta))/20

#superposition plot of rot. rate & trans. acc.

fig = plt.figure()

ax1 = fig.add_subplot(111)

ax1.plot(secta, ta, 'r')

ax1.set_ylim(ymin=min(ta),ymax=max(ta))

ax1.set_title('Superposition of trans. acc. & rot. rate')

ax1.set_ylabel('transverse acc. [m/s^2]', color='red')

ax1.set_xlabel('time [s]')

ax2 = ax1.twinx()

ax2.plot(secbjz, resbjz, 'k')

ax2.set_ylim(ymin=min(ta),ymax=max(ta))

ix

ax2.set_ylabel('rotation rate [rad/s]')

ax2.set_xlabel('time [s]')

plt.suptitle('%s' % (event))

plt.savefig('superposition_TA_RR.ps')

#trans. acc. & rotation rate plot

plt.figure()

plt.subplot(211)

plt.plot(secta, ta, 'r')

plt.title("transverse acceleration & rotation rate" % (t))

plt.ylabel("transverse acc. [m/s^2]")

plt.xlabel("Time [s]")

plt.subplot(212)

plt.plot(secbjz, resbjz, 'k')

plt.xlabel("time [s]")

plt.ylabel("rotation rate [rad/s]")

plt.suptitle('%s' % (event))

plt.savefig('vs_TA_RR.ps')

print "trans. acc. vs rot. rate plot done"

#Spectrograms of rot. rate & trans. acc.

#Spectrogram of rot. rate

#fig = plt.figure()

#ax1 = fig.add_axes([0.1, 0.75, 0.7, 0.2])

#ax1.plot(secbjz, resbjz, 'k')

x

#ax1.set_title('Spectrogram of rotational component')

#ax1.set_ylabel('nm/s/Hz')

#ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.60])

#ax3 = fig.add_axes([0.83,0.1,0.03,0.6])

#ax, spec = spectrogram(resbjz, 20, mult=8.0, log=True, axis=ax2)

#ax1.set_xlim(secbjz[0], secbjz[-1])

#ax2.set_xlim(secbjz[0], secbjz[-1])

#ax3.set_xlabel('Sqrt')

#fig.colorbar(spec, cax=ax3)

#plt.savefig(outfile='SpectrogramRR.ps',format="ps")

#plt.show()

#Spectrogram of trans. acc.

#fig = plt.figure()

#ax1 = fig.add_axes([0.1, 0.75, 0.7, 0.2])

#ax1.plot(secta, ta,'k')

#ax1.set_title('Spectrogram of transversal component')

#ax1.set_ylabel('nm/s/Hz')

#ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.60])

#ax3 = fig.add_axes([0.83,0.1,0.03,0.6])

#ax, spec = spectrogram(ta, 20, mult=8.0, log=True, axis=ax2)

#ax1.set_xlim(secta[0], secta[-1])

#ax2.set_xlim(secta[0], secta[-1])

#ax3.set_xlabel('Sqrt')

#fig.colorbar(spec, cax=ax3)

#plt.savefig(outfile='SpectrogramTA.ps',format="ps")

xi

#cross correlation coefficent of rot. rate & trans. acc.

#a, b = xcorr(ta, resbjz, dist)

#print 'Max correlation coefficient: ' , round(b, 2)

#Resizing ndarray resbjz to correlate against ta

xresbjz = resbjz.copy()

xresbjz.resize((len(ta),), refcheck=False)

Delete to free memory ###

del resbjz

#cross correlation along time axis

#discrete, linear correlation of two 1-dim sequences

i=0

k=0

shiftlen = 20

winlen = 30*20 #samples weil direkt auf array (30s * 20Hz)

xcorr_array = np.empty(len(ta)/shiftlen)

while True:

 if i + shiftlen > len(xresbjz):

 break

 window1 = xresbjz[i : i + winlen]

 window2 = ta[i : i + winlen]

 xcorr_array[k] = np.corrcoef(window1,window2)[1,0]

xii

 k=k+1

 i=i + shiftlen

#setting new y range for plot

xsecbjz = np.arange(len(xresbjz))/20

#plotting the figure

fig = plt.figure()

ax1 = fig.add_subplot(211)

ax1.plot(secta, ta, 'r')

ax1.set_ylim(ymin=min(ta),ymax=max(ta))

ax1.set_title('Superposition of trans. acc. & rot. rate')

ax1.set_ylabel('transverse acc. [m/s^2]', color='red')

ax2 = ax1.twinx()

ax2.plot(xsecbjz, xresbjz, 'k')

ax2.set_ylim(ymin=min(ta),ymax=max(ta))

ax2.set_ylabel('rotation rate [rad/s]')

ax2.set_xlabel('time [s]')

ax3 = fig.add_subplot(212, sharex=ax1)

ax3.plot(abs(xcorr_array))

ax3.set_title('Cross-corr. coeff. for every 30s')

ax3.set_ylabel('Max Cross-corr. norm.')

ax3.set_xlabel('time [s]')

ax3.set_xlim((0,len(xcorr_array)))

plt.suptitle('%s' % (event))

plt.savefig('crosscorr_ta-rr.ps')

print "trans_acc_rot_rat_vs_cc_norm plot done"

xiii

print "spectrogram plot of TA ..."

spectrogram(ta, 20, log=False, outfile='SpectrogramTA.ps', format='PS', mult=8.0)

print "spectrogram plot done"

print "spectrogram plot of RR ..."

spectrogram(xresbjz, 20, log=False, outfile='SpectrogramRR.ps', format='PS', mult=8.0)

print "spectrogram plots done"

B. Source code of ps2pdf script

from pyPdf import PdfFileWriter, PdfFileReader

output = PdfFileWriter()

input1 = PdfFileReader(file("4C-plot.ps", "rb"))

input2 = PdfFileReader(file("BHN_instrument-correction.ps", "rb"))

input3 = PdfFileReader(file("BHE_instrument-correction.ps", "rb"))

input4 = PdfFileReader(file("BHZ_instrument-correction.ps", "rb"))

input5 = PdfFileReader(file("BJZ_instrument-correction.ps", "rb"))

input6 = PdfFileReader(file("vs_TA_RR.ps", "rb"))

input7 = PdfFileReader(file("superposition_TA_RR.ps", "rb"))

input8 = PdfFileReader(file("crosscorr_ta-rr.ps", "rb"))

input9 = PdfFileReader(file("SpectrogramTA.ps", "rb"))

input10 = PdfFileReader(file("SpectrogramRR.ps", "rb"))

add all pages from inputs to output document, unchanged

output.addPage(input1.getPage(0))

output.addPage(input2.getPage(1))

output.addPage(input3.getPage(2))

xiv

output.addPage(input4.getPage(3))

output.addPage(input5.getPage(4))

output.addPage(input6.getPage(5))

output.addPage(input7.getPage(6))

output.addPage(input8.getPage(7))

output.addPage(input9.getPage(8))

output.addPage(input10.getPage(9))

print how many pages the document has:

print "document1.pdf has %s pages." % input1.getNumPages()

finally, write "output" to event.pdf

outputStream = file("event.pdf", "wb")

output.write(outputStream)

outputStream.close()

